Diverse Data Selection under Fairness Constraints

Zafeiria (Iro) Moumoulidou
zmoumoulidou@cs.umass.edu

Andrew McGregor
mcgregor@cs.umass.edu

Alexandra Meliou
ameli@cs.umass.edu

DREAM LAB

There is a +1 blue point and a -1 orange point is missing. Let's swap!
B. Swap Phase

1. Let's add an orange point!

We add point 2 because it's the farthest away from the other orange point 5!
2. Let's remove a blue point!

We remove point 1 because it's the closest to point 2 we just added!
 -

The Fair-Flow algorithm: \# colors ≥ 3

 Universe of points placed on a line: (3m-1) - approx. (1) 2 (3) 45 6Select a set of 4 points with:

$$
\# O=1 \quad \# O=1 \# O=2
$$

$$
\text { Oracle }_{d_{\text {ClOSE }}}^{d_{\text {fAR }}}
$$

A. Step 1

For every color:
Find a maximal set of points that are $\geq d_{\text {FAR }}$ far apart.

C. Step 3

Solve a Max-Flow problem to find a fair and diverse set

