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1 Introduction and problem definition
Result diversification is an important concept frequently used in the context of search engines, information retrieval and
summarization among others. As a motivating example, consider a query over the #megexit hashtag. 1 A qualitative result
set would be a collection of documents that are relevant to the query and diverse in context. In this work, we capture
the diversity requirement using the Max-Min diversification model, which is also known as the p-dispersion or remote-edge
problem [11, 12]. In the Max-Min diversification problem, we aim to select a set of k elements whose minimum pairwise
distance in some metric space is maximized. Namely, in the #megexit example we want to maximize the dissimilarity in
context of any two documents. Moreover, in the literature a common way to model relevance, or some utility function properly
defined for an application of interest, is via submodular functions [2, 4, 10]. In this work, we focus on monotone nonnegative
submodular functions which reward a set of elements according to their relevance or utility; namely an irrelevant set is not
penalized but instead its value is equal to zero. Nonetheless, diversity in context alone is not always sufficient to produce
good result sets. An orthogonal requirement is for the document collection to cover the available sources (news channels)
in order to guarantee an objective representation of the information. In order to address this additional requirement, we
introduce the notion of fairness constraints defined over a categorical attribute with m different values and we request that
the final result set contains ki representatives from the i-th group. Formally, the problem definition is as follows:
Problem Definition: We assume a dataset X of size n partitioned into m disjoint groups; X =

∪m
i=1 Xi, a metric distance

function d(·, ·) : X ×X → R+
0 along with a monotone nonnegative submodular function f(·) : 2X → R+

0 and a set of fairness
constraints ⟨k1, k2, · · · , km⟩ with ki ≤ |Xi|,∀ i ∈ [m]. Then the problem we are studying is as follows:

maximize
S ⊆ X

f(S) + λ div(S)

subject to |S| = k, |S ∩ Xi| = ki, ∀ i ∈ [m]
(1)

where λ ∈ R+ is a trade-off parameter between the two objectives, k =
m∑
i=1

ki and div(S) is equal to:

min
si,sj∈S,si ̸=sj

d(si, sj)

The Max-Min diversification problem was shown to be NP-hard using a reduction from the Max-Clique problem [11].
This fact immediately implies that problem 1 is also NP-hard so we can only hope for approximate solutions.

2 Background and related work
Fairness constraints as a partition matroid 2 : The key observation that guides the algorithmic framework we propose
for problem 1 is the fact that the fairness constraints can be modelled by a partition matroid. Below we briefly provide the
definition of a partition matroid:

Definition 1. (Partition Matroid) A matroid M = (X , I), where X is the ground set and I is the collection of the
independent sets, is a partition matroid if X can be decomposed into m disjoint sets X1,X2, ...,Xm and I is defined as

I = {S ⊆ X : |S ∩ Xi| ≤ ki ∀ i ∈ [m]}

Definition 2. A maximal independent set in I (also called a basis for a matroid) is a set for which there is no element
outside of the set that can be added so that the set still remains independent.

1#megexit is the hashtag referring to the announcement that the Dutch and Dutchess of Sussex made regarding their intention to step back as
senior members of the royal family and become financially independent.

2A matroidM is a combinatorial object defined as a pair of (E, I) where E is a ground set and the set of independent sets I is composed of any
subset X ⊆ E that satisfies the hereditary and exchange property.
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For the partition matroid, a maximal independent set (or a basis) is an independent set that satisfies all the cardinality
constraints with equality, namely has a size equal to

m∑
i=1

ki = k. Therefore, the optimization problem can now be rephrased

as maximizing the objective function over all the bases of a partition matroid M defined on the dataset X . Formally, we
have:

maximize
S ∈ I : |S| = k

f(S) + λ div(S)

Diversity Maximization: The Max-Min diversification problem was first studied by Ravi et al. [11] and Tamir [12] in
the context of facility location. They independently designed GMM algorithm 2 which was shown to be a 1

2−approximation
algorithm that at each step greedily picks to add in the set the point that is the farthest from all the other elements selected
so far. Dasgupta et al. [4] study the problem of the Max-Min diversification problem, without the fairness constraints, in
conjuction with a monotone nonnegative submodular function in the context of summarization. The authors show that a
simple two-round greedy algorithm that separately optimizes each part of the objective and then selects the set for which
the value of the objective function is maximized, gives a 1

4− approximation algorithm. To the best of our knowledge, the
Max-Min diversification problem has not been studied under fairness constraints. In this work, we combine the Max-Min
objective with a monotone, nonnegative submodular function and investigate whether a similar approach to the one designed
by Dasgupta et al. [4] holds for the fairness constrained setting. In the diversification literature, the Max-Sum diversification
variant where the objective to be maximized is the average pairwise distance in a set was studied under matroid constraints
by Abassi et al. [1]. In this setting, the retrieved set is a basis of the matroid retrieved using a local search algorithm with
a 1

2− approximation guarantee. Borodin et al. [2] formulate a bi-criteria optimization problem under matroid constraints
defined as the sum of the Max-sum objective and a a monotone, nonnegative submodular function and show that the local
search approach preserves the 1

2− approximation factor.
Submodular Maximization: Submodular maximization under matroid constraints was first studied in [8]. Fisher et al. [8]
showed that a simple greedy heuristic that at each step adds the point with the maximum marginal gain while maintaining a
solution that is an independent set provides a 1

2− approximation guarantee in the presence of a matroid. Calinesu et al. [3]
and Filmus et al. [7] design algorithms that further improve the result to an (1− 1

e )-approximation factor, which is shown to
be the best result we can obtain [6]. For a detailed overview of the submodular maximization literature we refer the reader
to [9].

3 Approach
The fair Max-Min diversification problem follows the definition of problem 1 when f(S) = 0 and λ = 1. As part of my research
project, we designed the Fair-Flow algorithm which we are going to use as a black box for the algorithmic framework we
propose. Due to space constraints, we only give a high level description of the algorithm. The main idea is that the optimal
Max-Min diversity score is an edge in the dataset X so we can try to guess which edge out of the

(
n
2

)
≃ n2 edges could be the

optimal one. We reduce the number of guesses to k2m2 by selecting a diverse set of k elements in each partition separately
using GMM 2. Then we perform a binary search over the possible guesses and for each guess γ, we run the Fair-Flow
algorithm. If the procedure fails to find a set of k elements that are at least d2 = γ

3m−1 distance apart, we move towards to
a guess with a smaller value and if we succeed to a guess with a larger value. We return the set with the best diversity score.
The Fair-Flow algorithm reduces the problem of selecting k elements that are at least d2 = γ

3m−1 apart to a max-flow
problem.
Theorem 1. The Fair-Flow algorithm is a 3m− 1-approximation algorithm for the fair Max-Min diversification problem.

The algorithmic framework we propose for problem 1 uses the technique introduced in [3]. At first, we set λ = 0 and reduce
the problem down to the problem of submodular maximization under a matroid constraint. Using algorithm 3, we retrieve
the S1 set, which is an 1

2− approximate solution [8] with respect to the nonnegative, monotone submodular function in the
objective. Then, we set f(S) = 0 and the problem reduces down to the fair Max-Min diversification problem. Using the Fair-
Flow algorithm, we retrieve the S2 set which is a 1

3m−1 approximate solution. We set the solution of problem 1 to be equal to

S = argmaxS′∈{S1,S2} f(S′) + λ div(S′)

Theorem 2. The two-round algorithm is a 1
2(3m−1) -approximation algorithm for problem 1.

Proof. Let S∗
1 , S∗

2 and S∗ be the optimal solution for the submodular part of the objective, for the diversity part of the
objective and for problem 1 respectively. Then from the approximation guarantees of the Fair-Flow algorithm 1 and the
greedy algorithm 3, we get that:

f(S1) ≥ 1
2f(S

∗
1 )

div(S2) ≥ 1
3m−1div(S

∗
2 )
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Algorithm 1 Fair-Flow Algorithm

Input: X =
m∪
i=1
Xi: Universe of available elements

k1, . . . , km ∈ Z+

γ ∈ R: A guess of the optimum fair diversity.
Output: ki points in Xi for i ∈ [m]

1: procedure Fair-Flow
2: for i ∈ [m] do
3: Yi ← GMM(Xi, ∅, k)
4: Zi ← maximal prefix of Yi such that all points in Zi are

≥ d1 = mγ
3m−1

apart.
5: Construct undirected graph GZ with nodes Z =

∪
i Zi

and edges (z1, z2) if d(z1, z2) < d2 = γ
3m−1

6: C1, C2, . . . Ct ← Connected components of GZ

▷Construct flow graph
7: Construct directed graph G = (V,E) where

V = {a, u1, . . . , um, v1, . . . , vt, b}
E = {(a, ui) with capacity ki : i ∈ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}
∪ {(ui, vj) with capacity 1 : |Zi ∩ Cj | ≥ 1}

8: Compute max a-b flow.
9: if flow size < k =

∑
i ki then return ∅ ▷Abort

10: else ▷max flow is k
11: ∀(ui, vj) with flow add a node in Cj with color i to S

return S

Algorithm 2 GMM Algorithm [11, 12]
Input: X =

∪m
i=1 Xi, k ∈ Z+

Output: S ⊆ X of size k

1: procedure GMM(X , I, k)
2: s1 ← a randomly chosen point in X
3: S ← s1
4: while |S| < k do
5: S ← S ∪ argmax

x∈X\S
min

s∈S∪I
d(x, s)

return S

Algorithm 3 Greedy Algorithm for Submodular Maximization
[8, 9]

Input: X =
∪m

i=1 Xi, M(X , I), k ∈ Z+

Output: S ⊆ X of size k

1: procedure MaxMarginalGain(X , k)
2: S ← ∅.
3: while |S| < k do
4: S ← S ∪ argmax

x/∈S:S∪{x}∈I
f(S ∪ {x})− f(S)

return S

Figure 1: Algorithmic framework for problem 1

Moreover, by the way S is selected we know that the following holds:

f(S) + λ div(S) ≥ f(S1) + λ div(S1) (2)
f(S) + λ div(S) ≥ f(S2) + λ div(S2) (3)

Combining 2, 3 and using the fact that both f and the Max-Min diversity are nonnegative functions we get that:

f(S) + λ div(S) ≥ 1

2

(
f(S1) + λ div(S1) + f(S2) + λ div(S2)

)
, due to nonnegativity of f and div

≥ 1

2

(
f(S1) + λ div(S2)

)
≥ 1

2

(1
2
f(S∗

1 ) + λ
1

3m− 1
div(S∗

2 )
)

≥ 1

4
f(S∗

1 ) + λ
1

2(3m− 1)
div(S∗

2 )

≥ 1

4
f(S∗) + λ

1

2(3m− 1)
div(S∗)

≥ 1

2(3m− 1)

(
f(S∗) + λ div(S∗)

)

(4)

where the final steps follow from the fact that f(S∗
1 ) ≥ f(S∗) and div(S∗

2 ) ≥ div(S∗) which is implied by the optimality
of S∗

1 and S∗
2 for the two parts of the objective along with the fact that the two quantities, f(S∗) and λdiv(S∗), are both

nonnegative and 1
4 ≥ 1

2(3m−1) ,∀m ≥ 2.

From the analysis above, we showed that we can come up with a simple solution for problem 1 that uses prior work.
Moreover, it is easy to verify that the approximation factor for the Max-Min diversity is the dominant term in the analysis.
Therefore, even if we were to use a more efficient algorithm of the submodular maximization literature [3, 7] with respect to
the first part of the objective, the final approximation bound would not change.
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(a) Data with computable optimal solution.
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(b) Data with known optimal solution.

Figure 2: Approximation performance of the proposed algorithm with respect to the number of different groups m and
the regularization term λ. (a) Dataset of size N = 25 with computable optimal solution and k = 5. (b) Dataset of size
N = 10, 128 with computable optimal solution and k = 128.

4 Experimental Evaluation
In this section, we evaluate the behavior of the proposed algorithmic framework in terms of the approximation factor using
synthetic datasets with computable and known optimal solution respectively. Furthermore, we use the Adult dataset [5] to
evaluate the price of fairness, namely how much the sacrifice in the objective function is so as to ensure fairness. Finally,
we use the UTKFace dataset [13] so as to qualitatively compare the solution of the fairness oblivious algorithm with that
produced by the fair algorithm.

Submodular functions: In the experiments below we use two different classes of submodular functions. In particular, for
the approximation performance we use a coverage function which is monotone and nonnegative. As a motivating example
for using a coverage function, consider a document collection D =

∪m
i=1 Di from m different news channels and a a set of

different topics T (e.g politics, tech). Each document is associated with a subset T ′ ⊆ T of the topics. A fair document
collection D′ ⊆ D consists of ⟨k1, k2, · · · , km⟩ documents that maximize the number of covered topics in T . At each step, the
greedy algorithm 3 selects the document with the maximum marginal gain; namely the document which covers the maximum
number of topics not seen by the previously selected documents so far.

For the experiments on the price of fairness and the qualitative comparison, we use the function f(S) =
∑

si∈S w(si),
where w(si) is a nonnegative score indicating the utility or relevance of an item in the result set. Notice that f(S) is a special
case of submodular functions for which the greedy algorithm is optimal even under fairness constraints. (e.g by sorting the
elements in each group and selecting the ki top results to the optimal solution). As a result, if were to use the modular
function for the evaluation of the approximation factor the greedy algorithm would always the find the optimal solution for
the submodular part of the objective in problem 1.

Real-world datasets: We use two real world datasets, the Adult dataset [5] and the UTKFace dataset [13]. The Adult
dataset consists of 30,162 tuples with no missing attributes. For the experiments on the price of fairness we use only
the continuous attributes (e.g age, capital-gain etc), normalize the data and select race as the sensitive attribute. Race
defines m = 5 different groups: White (25, 933), Asian-Pac-Islander (895), Amer-Indian-Eskimo (286), Black (2,817) and
Other (231). The UTKFace dataset consists of 23,708 RGB images of size 200×200 size and is frequently used for gender
classification. Gender defines m = 2 different groups: Male (12,391), Female (11,317). We perform a dimensionality reduction
using PCA to select the top ℓ = 330 eigenfaces that accumulate 96% of the total variance of the data.

Approximation factor: We evaluate the approximation factor of the proposed approach using a synthetic dataset X ∼
N (0, 1) with N = 25 items and computable optimal solution via exhaustive search. We use coverage as the submodular part
of the objective and set k = 5. The fairness constraints are defined following a proportional representation rule; the sample
preserves the balance ratio of the groups as observed in X. For readability, we report the inverse of the approximation factor,
namely how much better the optimal solution is with respect to the solution retrieved by the algorithm. In figure 2 we give
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(a) Proportional representation of the m demographic groups.
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(b) Equal representation of the m demographic groups.

Figure 3: Price of fairness while k increases under: (a) Proportional representation of the m = 5 demographic groups present
in the dataset. The sample of size k preserves the balance ratio observed in the original dataset. (b) Equal representation of
the m = 5 demographic groups present in the dataset. The sample of size k contains the same number of elements per group.
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Figure 4: Qualitative comparison of three summaries produced by a fairness oblivious and a fair algorithm when the sensitive
attribute is gender. Each summary is collected from a set of 16 images, with 8 male and 8 female faces, randomly selected
from the UTKFace dataset [13]. We set ⟨k1, k2⟩ = ⟨4, 4⟩. We observe that the first set of summaries under-represent female
faces while. The second set of summaries though equally represent genders while maintaining diversity.

a boxplot showing the approximation factors observed in #runs= 200 for different λ and m values. Observe that the smaller
the regularization term λ is, the more significant the submodular part of the objective is. As a result, since the approximation
guarantee is stronger for the submodular part, we observe that as λ increases, the approximation factor worsens. Nonetheless,
we observe that the approximation performance of the algorithm is better in practice that the theoretical bound we derived.
We also use a synthetic dataset with known optimal solution of size N = 10, 128 items. We construct a set of k = 128 optimal
elements as follows: (1) We assume there are 200 different topics and randomly assign a subset of at most 20 of the available
topics to each of the k elements. The the optimal value for the submodular part of the objective is equal to the number of
covered topics from the k optimal elements. We associate the rest of the elements only with elements already covered by the
optimal solution so as to guarantee that there does not exist a better solution. (2) For diversity part of the objective, we
assume that k optimal elements are the ‘k’ corners of a unit hypercube in the D = log2 128 = 7 dimensional space and the
rest 104 points are generated by randomly selecting each of their dimensions to be in the (0, 1) range. (so that all the other
points lie inside the hypercube)

Price of Fairness: For this set of experiments, we use the Adult dataset and assign each tuple a weight equal to the ‘age’
attribute. We normalize the weights so as to be in the [0, 1] range. The rest of the continuous attibutes are used so as
to compute the ℓ2−distance of the tuples present in the data. The algorithm oblivious to fairness follows the technique
introduced in [4]; namely we run GMM 2 to find a solution for the diversity part of the objective and use the maximum
marginal gain algorithm ignoring the constraints to find a solution for the submodular part. Then among the two solutions
we select the one that maximizes the value for the combined objective. From the experimental results shown in figure 3, we
observe the price of fairness is negligible when the sample of size k preserves the balance in the original dataset. However,
under equal representation the price of fairness is more prominent. Notice that λ = 1 for the experiments shown above.

Qualitative Results: We set λ = 1 and for each set of experiments shown if figure 4, we randomly select a set of 16 images
with 8 female and 8 male faces from the UTFace dataset. Subsequently, we randomly assign each image a score in the [0, 1]
range and use ℓ2−distance as our metric. Finally, we produce a summary with 4 images per gender of the 16 sampled images

5



using the fair algorithm we proposed and the algorithm oblivious to fairness proposed in [4]. Observe that the first set of
summaries are often unbalanced with respect to gender since contain more male faces.
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