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Abstract

Classification is a fundamental supervised-learning method that is frequently used
in high-stake decision making. Nonetheless, it has been noticed that classifica-
tion systems often discriminate against historically underrepresented groups. As
a result, during the last couple of years the machine learning community designed
various mechanisms that aim to provide fairness guarantees. In this project we
select six fair classification approaches and evaluate their profile in terms of cor-
rectness, fairness, efficiency, and scalability metrics. Further, in our evaluation we
use two real-world datasets and contrast with four fundamental fairness-unaware
classification models: Logistic Regression, Support Vector Machines, Decision
Trees and Neural Networks. To the best of our knowledge, the novelty of this
study is that it offers a thorough comparison among linear and non-linear models
using a diverse set of fair classification mechanisms, correctness and performance
metrics. Our findings show that fair approaches generally tradeoff some correct-
ness for fairness. All fair approaches enhance fairness according to the fairness
metrics we chose to evaluate on, but there is no single best approach that does
best across all correctness and fairness metrics. Further, our findings show that
different approaches have different level of efficiency, and we specifically identify
the approaches that are the most scalable with increasing number of data points
and attributes.

1 Introduction

Data-driven predictions and classification systems shape our perception of the world and ultimately
affect our decisions in a plethora of scenarios: from the places we visit, the news we read, and the
movies we watch, to who we find more suitable for a job position or who we identify as prone to
criminal activity. However, systems behave unexpectedly and make mistakes that often dispropor-
tionately affect various demographic groups: e.g., Amazon’s hiring tool was found to systematically
identify male candidates as more qualified for software engineering positions than female ones [11],
the misclassification error rate of COMPAS—a pre-trial risk assessment tool—was nearly twice as
high for black defendants, who were erroneously classified as high-risk for recidivism, compared to
white defendants [18], and commercial face recognition systems have higher accuracy in white and
male faces [4].

Consequently, the idea of fair classification has emerged in the recent literature along two primary
directions: fairness notions that dictate what fairness in classification should mean, and fairness
mechanisms that entail how a target notion of fairness should be enforced. This has led to an explo-
sion of fair classification approaches that apply different mechanisms to enforce different notions.
Fairness notions either aim for equal treatment among individuals or groups. The notion of indi-
vidual fairness suggests that any two people with similar characteristics should be treated similarly
regardless of their sensitive information (e.g., race, gender etc.), while group fairness suggests that
demographic groups defined with respect to a sensitive attribute receive similar treatment. More-
over, at a high level, the currently known fair approaches can be grouped into three main categories
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according to their mechanisms: (1) pre-processing approaches that modify the training data to repair
biases, (2) in-processing approaches that enforce fairness constraints in the learning algorithms, and
(3) post-processing approaches that alter the predictions of classification models to ensure fairness
in their output.

Although a plethora of fair classification approaches are now available in the literature, there is a
need to study and profile the fair approaches (or classifiers) in order to understand their strengths
and weaknesses. Fair approaches differ in correctness and fairness due to the different notions of
fairness they enforce, while the mechanism itself affects the runtime performance. The tradeoffs
between the different approaches need to be studied more exhaustively. To that end, our goal in
this work is to study six state-of-the-art fair approaches and empirically analyze their tradeoffs. We
summarize our contributions, methodology and experimental results as follows:

• We provide an overview of the following six fair approaches: (1) the pre-processing methods of
Feldman et al. [8] and Calmon et al. [5], (2) the in-processing method of Zafar et al. [25] and Celis
et al. [6], and (3) the post-processing method of Hardt et al. [12] and Pleiss et al. [21].
• In order to highlight the difference in behavior, We contrast the chosen fair approaches with four
widely-used fairness-unaware models: Logistic Regression, Support Vector Machines (SVMs), De-
cision Trees, and Neural Networks.
• In order to evaluate the correctness and fairness of the approaches, we select three correctness
metrics—accuracy, precision, recall—and three fairness metrics—statistical parity difference, true
positive balance rate, false positive balance rate—in our experiment. Further, we use two real-world
datasets, Adult [16] and Compas [18], that represent different phenomena of discrimination.
• At a high level, the experimental approach we selected is the following: we first train a fairness-
unaware classifier. Then using the fairness mechanisms we study in this project we build a fair
classifier and evaluate how its behavior, in terms of correctness and fairness, compares to the corre-
sponding unfair model.
• Our findings demonstrate that typically fair approaches trade accuracy for fairness. Further, we
observe that all of the mechanisms are typically able to reduce bias and discrimination accroding
to the fairness metrics we evaluate on. However, we observe there is no single mechanism that
outperforms all the other mechanisms across all metrics.
• We also study the efficiency and scalability of fair approaches. In particular, we analyze their
runtime performance as the number of data points increases. We repeat the experiment for increasing
number of attributes. Our findings show that pre- and in-processing approaches demonstrate varying
degree of efficiency and scalability, but post-processing approaches are overall the most efficient and
scalable.

2 Related Work

Fair classification approaches. In recent years there have been a variety of fair approaches pro-
posed in the literature. As it is not possible to evaluate all fair approaches within the scope of our
project, we highlight some noteworthy fair approaches that we did not include in our evaluation.

In terms of pre-processing approaches, Kamiran et al. [14] is a work that has been very popular
over the years. It is a reweighing technique that samples the tuples in the data in order to equalize
the proportion of positive/negative labels across sensitive groups (e.g., people of different races).
Nevertheless, the pre-processing approaches we choose for our evaluation (Section 4) empirically
out-perform this approach [13]. Further, there have been recent works in terms of causality based
approaches [17, 27] that explore the cause and effect relationship between the sensitive attribute and
the predicted outcome. For example, Kusner et al. [17] describe a counter-factual world where fair
classifiers are trained only on derived attributes that are not causally influenced by the sensitive at-
tribute. However, all causality based mechanisms require significant domain knowledge to properly
design the causal model underlying the data.

In terms of in-processing, much of the work involving fair classification has targeted this direction.
Zhang et al. [26] utilize techniques from adversarial learning to train a fair classifier and adver-
sary simultaneously, where fairness is ensured if the adversary cannot guess the sensitive attribute
based on the predictions made by the classifier, i.e., predictions are similar regardless of the sensi-
tive group. On the other hand, other works [1, 22] define constrained optimization techniques that
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accommodate multiple fairness constraints/notions within a single framework. One of our evaluated
approaches (Celis et al. [6]) is also a general framework with stronger theoretical guarantees than
the aforementioned approaches.

In terms of post-processing, it is the least popular dimension for applying fairness enhancing tech-
niques as it is generally less flexible than pre- or in-processing. Kamiran et al. [15] propose to
modify the predictions of the tuples that are very close to the decision boundary—where the classi-
fier is least confident about its predictions—in order to ensure the proportion of favorable outcomes
is equal across the sensitive groups. However, a recent study by Woodworth et al. [24] proves
the sub-optimality of post-hoc corrections and discusses a (theoretical) first step towards designing
nearly-optimal post-processing approaches.

Experimental analysis of fair approaches. While there has been a variety of work towards de-
veloping fair classification approaches, prior work in terms of profiling or benchmarking these ap-
proaches has been very limited. The most relevant work that coincides with ours is an experimental
evaluation by Friedler et al. [9]. This work compares variations of 4 fair approaches over 5 fair-
ness metrics, and primarily explores issues such as the impact of data pre-processing, correlation
between different measures of fairness, etc. However, this work is limited to pre- and in-processing
fair approaches and does not consider scalability or efficiency issues. Further, we added more recent
fairness-unaware ML models (e.g., neural networks) in our comparative analysis. Another related
work close to ours is the AI-Fairness 360 toolkit by IBM [3], which is an extensible framework that
includes a variety of fair approaches and metrics for testing. Nonetheless, it is not designed for com-
parative analysis of approaches on an equal footing, rather used for exploring different approaches
individually. Other works [23, 10] provide general frameworks to evaluate approaches on a specific
fairness metric but are not extendable for evaluating multiple metrics. Lastly, there are surveys that
discuss fair approaches and metrics available in the literature [2, 19], but do not empirically evaluate
them.

3 Novelty Statement

The aim of this project is to select some of the frequently used fairness-unaware classification models
and fair classification approaches in the literature. We empirically compare them in terms of their
performance aspect, such as correctness, fairness, efficiency, and scalability. As we discussed in
detail in Section 2, prior work in terms of profiling fair approaches has been limited. Prior works
either do not consider performance issues like efficiency, or do not empirically evaluate/analyze fair
approaches across different metrics. Our project has the following novelties: (1) it demonstrates an
empirical study of fair approaches that well-represent the state-of-the-art, (2) it includes approaches
from all dimensions (pre-, in-, and post-processing) unlike previous work [9], and lastly, (3) it
presents efficiency and scalability experiments that were not previously explored.

4 Methodology

In this section we define the correctness and fairness metrics according to which we evaluate the
behavior of the fairness approaches we study in this project. Further, we provide an overview of the
fair approaches under our evaluation in order to give a high level understanding of their mechanisms.

4.1 Metrics

We first introduce some notation that we use throughout this section. Specifically, we define y =
{0, 1} to be the true label for a data sample; we refer to y = 1 as the positive and to y = 0 as the
negative class respectively. In our evaluation we interpret y = 1 to be the favorable outcome of the
classification task.

Further, we define ŷ to be the predicted label for a sample. We also model fairness in terms of a
binary sensitive attribute S = {0, 1}; we define the S = 1 group to be privileged and the S = 0
group to be unprivileged. Throughout this paper, we refer to the privileged and the unprivileged
groups together as sensitive groups.
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y = 1 y = 0

ŷ = 1 True Positives (TP) False Positives (FP)
ŷ = 0 False Negatives (FN) True Negatives (TN)

y : true label, ŷ : predicted label

Figure 1: Confusion Matrix for a binary classifier.

4.1.1 Correctness Metrics

In Figure 1 we define the confusion matrix for a binary classifier and introduce the notions of true
positives/negatives and false positives/negatives. We now define the following metrics:

Accuracy. The accuracy of a classifier is defined as the number of samples that are correctly classi-
fied, either as positively or negatively labeled, and is equal to:

Accuracy =
TN + TP

TN + TP + FP + FN

The values of this metric lie within the [0, 1] range; larger accuracy values indicate higher correctness
for a classifier.

Precision. The precision of a classifier is defined as follows:

Precision =
TP

TP + FP

Recall. The recall of a classifier is:

Recall =
TP

TP + FN

Similarly to accuracy the values of precision and recall metrics also lie within the [0, 1] range. Higher
values indicate higher correctness. Intuitively, precision models the success rate in identifying sam-
ples that belong in the positive class. On the other hand, recall measures the percentage of samples
in the positive class that were correctly classified.

4.1.2 Fairness Metrics

Below we describe the fairness metrics we use in our experimental evaluation.

Statistical Parity Difference. Statistical parity difference measures if each demographic group
receives the same proportion of favorable outcomes, i.e., is the probability of receiving favorable
outcomes same for everyone irrespective of whichever sensitive group they belong to. To that end,
this metric is defined as follows:

SPD = p(ŷ = 1 | s = 1)− p(ŷ = 1 | s = 0)

The values of this metric lie in the [−1, 1] range. SPD = 0 indicates a completely fair classifier, i.e.,
each group receives equal proportion of positive/favorable outcomes. On the other hand, as |SPD|
moves closer to 1 the classifier becomes more unfair. Notice that this metric does not depend on the
true label of the samples.

True Positive Balance Rate (TPBR). TPBR measures a classifier’s ability to correctly identify
members of the positive class, irrespective of whichever sensitive group they belong to. The aim is
that the true positive rate should be similar in the privileged and the unprivileged group, so that the
classifier does not discriminate (or favor) against one group. This metric is defined as:

TPBR = p(ŷ = 1 | y = 1, s = 1)− p(ŷ = 1 | y = 1, s = 0)
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False Positive Balance Rate (FPBR). Similarly to TPBR, FBPR measures if the false positive rate
is similar across the sensitive groups. It is defined as:

FPBR = p(ŷ = 1 | y = 0, s = 1)− p(ŷ = 1 | y = 0, s = 0)

Both TPBR and FBPR take values in the [−1, 1] range. The closer | TPBR | (or | FBPR |) is to zero
the fairer the classifier, it indicates there is little difference in success rates between the sensitive
groups and no group has unfair advantage.

4.2 Fair approaches

The approaches we evaluate can be categorized using the dimension of pre-, in-, or post-processing.
Hence, we provide a brief overview of the approaches using this categorization.

4.2.1 Pre-processing approaches

Pre- processing approaches are motivated from the fact that machine learning techniques are data-
driven and the predictions of a classifier reflect the trend and biases of the training data. All pre-
processing approaches work under the assumption that the distribution of predictions will reasonably
follow the training labels. These approaches modify the data before training to remove biases,
which subsequently ensures that the predictions of a learned classifier satisfy the targeted notion of
fairness. The main advantage of pre-processing is that it is model-agnostic, which allows flexibility
in choosing the classification algorithm based on the application requirements. However, since
pre-processing happens before training and does not actually have access to the predictions, the
approaches often do not come with provable guarantees for fairness. We describe the approaches we
use in this project:

Feldman et al. [8] (FELDMAN) propose a pre-processing approach that enforces fairness as statis-
tical parity, which requires the proportion of positive predictions to be similar across the sensitive
groups. This approach argues that if a classifier is learned on training data where the attributes are
independent of the sensitive attribute S, then the classifier is also likely to make predictions that
are independent of S. Thus, the proportion of positive predictions will be similar across sensitive
groups. To this end, Feldman et al. [8] modify each attribute in the training data, and ensure that the
marginal distribution of each individual attribute is indistinguishable across the sensitive groups.

Calmon et al. [5] (CALMON) define a pre-processing approach that also enforces fairness as statis-
tical parity. This approach defines a new joint distribution and modifies the attributes in the training
data as well as the training labels. It modifies the data with three goals in mind: (1) the amount of
statistical dependence between training labels and the sensitive attribute is reduced, so that a classi-
fier trained on this data satisfies statistical parity, (2) the joint distribution of the transformed data is
close to the original distribution, and (3) individual attributes are not substantially distorted.

4.2.2 In-processing approaches

In-processing approaches are most favored by the machine learning community and the majority
of the fair classification approaches fall under this category. In-processing takes place within the
training stage and fairness is typically added as a constraint to the classifier’s objective function
(that maximizes correctness). The advantage of in-processing lies precisely in the ability to adjust
the classification objective to address fairness requirements directly, and thus, avoids any extra over-
head of pre- or post-processing. However, in-processing techniques are model-specific and require
re-implementation of the learning algorithms to include the fairness constraints. This hinges on the
assumption that the model is replaceable or modifiable, which may not always be the case.

Zafar et al. [25] (ZAFAR) propose an in-processing approach that enforces fairness as statistical
parity. The actual definition of statistical parity (Section 4.1.2) is not directly used as a constraint,
as it is not a convex function of the classifier parameters. Instead, Zafar et al. [25] utilize tuples’ dis-
tance from the decision boundary as a proxy of ŷ and models a proxy constraint of statistical parity
that is also a convex function of the classifier’s parameters. Then this approach solves the resulting
constrained optimization problem that maximizes prediction accuracy under fairness constraints.
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Celis et al. [6] (CELIS) present an in-processing approach that accommodates a large group of
fairness notions or metrics, unlike the approaches we described so far. To that end, this approach
develops a general framework that solves constrained optimization problems under the fairness con-
straint that expresses the targeted fairness notion. It relaxes all fairness notions (or metrics) to a
linear function of the classifier parameters and designs the corresponding optimization problem to
minimize prediction error under fairness constraints. In our experiments, we use a variation of this
approach that uses a fairness notion called predictive parity1, which targets to equalize the false
discovery rate among sensitive groups.

4.2.3 Post-processing approaches

Post-processing approaches enforce fairness by manipulating the predictions made by an already-
trained classifier. Like pre-processing, these approaches are also model-agnostic. Their benefit is
that they do not require classifier retraining. However, since post-processing is applied in a late stage
of the learning process, it offers less flexibility than pre- and in-processing.

Hardt et al. [12] (HARDT) propose a post-processing that enforces the notion of equalized odds,
which seeks to equalize the TPR and TNR across the sensitive groups (i.e., minimizes TPBR and
FPBR). This approach learns a new predictor derived from the predictions ŷ and the sensitive at-
tributes S. Essentially, it solves a linear program to find probabilities with which to change predic-
tions so as to enforce equalized odds.

Pleiss et al. [21] (PLEISS) define a post-processing approach that enforces predictive equality—a
notion that equalizes FPR across the sensitive groups (i.e., minimizes FPBR)—while also ensuring
that the classifier predictions remain calibrated. To achieve this, it modifies prediction ŷ for a random
subset of tuples within the sensitive group with lower FPR in order to equalize across the groups.

5 Experimental Evaluation

In this section we describe the all the experimental settings such as the datasets, hyper-parameters for
each model, etc. We further discuss the experimental methodology according to which we produced
the results that we present at the end of this section. All the necessary documentation and source
code for our experiments are publicly available2.

5.1 Datasets

We select two real-world datasets that are frequently used in the fairness literature because of their
imbalanced nature and bias. We describe them below:

Adult dataset [16]. This dataset is extracted from the US Census and consists of n = 45, 220
tuples (after removing tuples with missing attributes) that report income-related information about
individuals. The number of available features is 14 and include age, sex, race, capital-gain, occu-
pation information among others; in total there are 6 continuous and 8 categorical attributes. The
classification task in this dataset is to predict whether the salary for a given individual exceeds $50K.
Specifically, favorable or positive labels equal to 1 (y = 1) indicate that an individual earns≥ $50K.
Adult is highly discriminatory towards females as females in this dataset have significantly lower
proportion of positive labels, i.e., females are less likely to have receive income ≥ $50K. Hence,
in our evaluation we choose sex to be the sensitive attribute and females constitute the unprivileged
group.

Compas dataset [18]. The compas dataset from ProPublica consists of n = 5, 278 tuples that
contain information about the profile of defendants. There are 8 available features including race,
age, length of imprisonment etc. The prediction task is to identify whether a defendant re-offends
within two years of the initial arrest; positive labels (y = 1) indicate that an individual did not re-
offend. In our evaluation we choose race to be the sensitive attribute as Compas demonstrates the
most race-based discrimination: the number of re-offenders is much higher than all other races. We
chose African-Americans as the unprivileged group and all other races as privileged.

1The source code from the original authors only had this variation as publicly available.
2https://github.com/imoumoulidou/Project_689
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Method Hyper-parameters Method Hyper-parameters

Decision Tree (DT) d = 10 Decision Tree (DT) d = 3

FELDMAN (DT) d = 10 FELDMAN (DT) d = 3

CALMON (DT) d = 10 CALMON (DT) d = 5

Support Vector Machine (SVM) C = 10, γ = 0.001 Support Vector Machine (SVM) C = 1, γ = 1

FELDMAN (SVM) C = 10, γ = 1 FELDMAN (SVM) C = 10, γ = 1

CALMON (SVM) C = 10, γ = 0.01 CALMON (SVM) C = 10, γ = 0.01

Adult Dataset Compas Dataset

Figure 2: Hyper-parameters for the implemented classifiers. (Left): Adult dataset, (Right): Compas
Dataset.
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Figure 3: The model architecture of the neural networks we designed. We use softmax as the ouput
layer and cross entropy as the optimization objective.

5.2 Correctness and Fairness Evaluation: Methodology

5.2.1 Fairness-unaware Machine Learning Models

In this section we describe the process we followed to build the four fairness-unaware machine
learning models on each of the datasets we use in our experimental evaluation. Specifically, we
use Logistic Regression (LR), Decision Trees (DTs), Support Vector Machines (SVMs) and Neural
Networks (NNs). Hence, We have a total of 8 fairness-unaware models across the datasets (as seen
in Figure 4).

Dataset Preparation. We pre-processed the Adult and Compas dataset to binarize categorical fea-
tures and standarize the data to zero mean and unit variance. Further, we split the data into a 70−30%
train-test fold for LR, DTs, and SVMs models. For Neural Networks we used a 70− 15− 15% split
for training, validation and test data respectively.

Training Process and Hyper-parameter Tuning. In this section we describe the methodology we
followed to train and select the best machine learning for the two classification tasks we studied. For
the implementation of LR, SVMs and DTs we use the scikit-learn library [20], and for NNs we use
PyTorch.

Decision Trees. We perform a 5-fold validation to select the best value for the depth value. We
experimented with the following depth values d = {3, 5, 10, 15, 20, 25, 30, 40}.
Support Vector Machines. We select rbf as the kernel for the SVM models and perform a grid
search over C, γ parameters using 5-fold validation to select their best combination. C parameter
controls the regularization strength, which inversely proportional to the value of C. Further, γ
controls how much points far from the decision boundary affect the model. We tried the following
combinations: C = {101, 1, 10−1, 10−2, 10−3, 10−4} and γ = {1, 10−1, 10−2, 10−3}.
Neural Networks. For each classification task, we experimented with various model architectures.
Specifically, we experimented with the number of layers in the MLP and the number of hidden
units. We used cross entropy as the objective to be minimized and ReLU as the activation function.
Further we used Adam as the optimizer and experimented with various learning rates including
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Method Accuracy Precision Recall | SPD| | TPBR | | FPBR | Method Accuracy Precision Recall | SPD| | TPBR | | FPBR |

Logistic Regression (LR) 0.85 0.74 0.60 0.19 0.08 0.01 Decision Tree (DT) 0.84 0.77 0.52 0.13 0.04 0.053

FELDMAN (LR) 0.8 0.68 0.35 0.037 0.017 0.05 FELDMAN (DT) 0.8 0.65 0.39 0.01 0.04 0.04

CALMON (LR) 0.78 0.61 0.41 0.12 0.072 0.2 CALMON (DT) 0.8 0.62 0.4 0.08 0.05 0.12

CELIS ∗ 0.83 0.69 0.54 0.18 0.12 0.08 CELIS ∗ 0.83 0.69 0.54 0.18 0.12 0.08

ZAFAR ∗ 0.8 0.65 0.43 0.03 0.18 0.01 ZAFAR ∗ 0.8 0.65 0.43 0.03 0.18 0.01

HARDT (LR) 0.79 0.6 0.53 0.02 0.05 0.06 HARDT (DT) 0.8 0.64 0.5 0.01 0.03 0.07

PLEISS (LR) 0.82 0.73 0.44 0.1 0.09 0.04 PLEISS (DT) 0.82 0.75 0.4 0.08 0.07 0.02

Support Vector Machine (SVM) 0.85 0.75 0.57 0.17 0.073 0.09 Neural Network (NN) 0.85 0.74 0.61 0.19 0.08 0.12

FELDMAN (SVM) 0.81 0.77 0.32 0.06 0.007 0.003 FELDMAN (NN) 0.81 0.7 0.42 0.09 0.015 0.025

CALMON (SVM) 0.78 0.6 0.44 0.03 0.014 0.009 CALMON (NN) 0.78 0.61 0.42 0.08 0.04 0.11

CELIS ∗ 0.83 0.69 0.54 0.18 0.12 0.08 CELIS ∗ 0.83 0.69 0.54 0.18 0.12 0.08

ZAFAR ∗ 0.8 0.65 0.43 0.03 0.18 0.01 ZAFAR ∗ 0.8 0.65 0.43 0.03 0.18 0.01

HARDT (SVM) 0.79 0.63 0.52 0.04 0.01 0.04 HARDT (NN) 0.81 0.63 0.55 0.03 0.003 . 0.06

PLEISS (SVM) 0.82 0.75 0.43 0.1 0.04 0.04 PLEISS (NN) 0.82 0.73 0.4 0.08 0.09 0.03

Method Accuracy Precision Recall | SPD| | TPBR | | FPBR | Method Accuracy Precision Recall | SPD| | TPBR | | FPBR |

Logistic Regression (LR) 0.65 0.69 0.48 0.28 0.16 0.35 Decision Tree (DT) 0.66 0.66 0.58 0.15 0.089 0.14

FELDMAN (LR) 0.63 0.7 0.39 0.07 0.018 0.069 FELDMAN (DT) 0.64 0.67 0.48 0.034 0.003 0.005

CALMON (LR) 0.66 0.66 0.62 0.12 0.07 0.13 CALMON (DT) 0.68 0.69 0.58 0.06 0.03 0.05

CELIS ∗ 0.66 0.65 0.79 0.18 0.08 0.22 CELIS ∗ 0.66 0.65 0.79 0.18 0.08 0.22

ZAFAR ∗ 0.57 0.55 0.8 0.03 0.02 0.08 ZAFAR ∗ 0.57 0.55 0.8 0.03 0.02 0.08

HARDT (LR) 0.6 0.62 0.39 0.03 0.04 0.09 HARDT (DT) 0.61 0.61 0.48 0.05 0.07 0.03

PLEISS (LR) 0.65 0.69 0.48 0.32 0.41 0.17 PLEISS (DT) 0.65 0.66 0.56 0.22 0.24 0.11

Support Vector Machine (SVM) 0.66 0.67 0.55 0.3 0.2 0.34 Neural Network (NN) 0.67 0.69 0.55 0.32 0.2 0.35

FELDMAN (SVM) 0.64 0.7 0.4 0.08 0.02 0.08 FELDMAN (NN) 0.65 0.69 0.52 0.09 0.009 0.1

CALMON (SVM) 0.67 0.68 0.6 0.18 0.13 0.21 CALMON (NN) 0.67 0.67 0.6 0.14 0.07 0.19

CELIS ∗ 0.66 0.65 0.79 0.18 0.08 0.22 CELIS ∗ 0.66 0.65 0.79 0.18 0.08 0.22

ZAFAR ∗ 0.57 0.55 0.8 0.03 0.02 0.08 ZAFAR ∗ 0.57 0.55 0.8 0.03 0.02 0.08

HARDT (SVM) 0.6 0.62 0.43 0.05 0.08 0.03 HARDT (NN) 0.6 0.62 0.41 0.07 0.06 0.12

PLEISS (SVM) 0.65 0.67 0.54 0.34 0.39 0.21 PLEISS (NN) 0.67 0.71 0.56 0.33 0.33 0.24

Figure 4: (Top): Results for Adult dataset. (Bottom): Results for Compas Dataset. For every
machine learning model we report how the various fairness mechanisms affect the behavior of the
corresponding classifier in terms of correctness and fairness metrics. (∗) Note that the model inside
in-processing approaches cannot be changed as fairness constraints within these approaches are
strongly coupled with the model. We put the results from in-processing approaches in all the tables
for comparison, it does not represent they are using the specific model highlighted in the table
(Section 5.2.3 contains more details).

lr = {10−1, 10−2, 10−3, 10−4}, and found lr = 10−3 to perform well. We used 100 epochs and
batch sizes equal to 256 and 512.

5.2.2 Fair Models: Pre-Processing Mechanisms

In our evaluation we use the two pre-processing mechanisms which we described in Section 4:
FELDMAN and CALMON. As we mentioned in Section 1, pre-processing mechanisms modify the
data to account for fairness. For the implementation of these mechanisms we use the AIF360 toolkit
by IBM [3]. We use the publicly available code to generate modified training datasets for the two
classification tasks using both CALMON and FELDMAN. On each modified training data, we train
four fair classifiers using LR, SVM, DT, and NN as the model. Thus, we have a total of 16 fair
approaches across the datasets (as seen in Figure 4).

Figure 2 reports the best hyper-parameter values for the different models we implemented in this
project while Figure 3 describes the neural network architectures of the six different models we
designed. Finally, Figure 4 reports the correctness and fairness performance of the various methods.
We provide a discussion of our results at the end of the subsection.
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5.2.3 Fair Models: In-Processing Mechanisms

For implementing the in-processing mechanism of CELIS we use the code in the AIF360 toolkit [3].
For the ZAFAR method we use the publicly available code by the authors. 3 Recall that the in-
processing methods are not model-agnostic and typically define a constrained optimization problem
that expresses fairness as constraints and are strongly coupled with the model. As a result we used
these approaches as is, with no change in the models they come with. ZAFAR builds a logistic
regression model with fairness constraints and CELIS builds a customized constrained optimization
model using Lagrange duals.

5.2.4 Fair Models: Post-Processing Mechanisms

The post-processing approaches are model-agnostic and modify the predictions in the output of
the fairness-unaware model. Consequently, we evaluated the methods of HARDT and PLEISS over
all the unfair models we built. For the implementation of the post-processing mechanisms we use
the publicly available code from the authors. Specifically, for every unfair model we stored its
predictions along with the class probabilities learned for each sample and used the post-processing
to modify them. 4

Correctness and Fairness Evaluation: Discussion of Experimental Findings.

A general trend that we observe in the results in Figure 4 is that the fairness enhancing techniques
tend to compromise accuracy over fairness. This finding matches the intuition that since fair ap-
proaches divert the primary objective of classification from correctness only to both correctness and
fairness. As as a result, some loss in accuracy is expected. However, we also see that in many cases
the price of fairness, namely the loss in accuracy, is relatively small in most cases.

Further, especially in the case of the Adult dataset we observe a clear trend and see that across all
models the different techniques are able to increase the fairness of the machine learning models
at least with respect to the fairness metric they are optimizing, if not overall(e.g., FELDMAN and
CALMON aim for statistical parity, while HARDT and PLEISS for TPBR and FPBR). We also notice
that there is no clear winner over all fairness metrics: e.g., in the DT model FELDMAN has the
lowest SPD value but HARDT has the lowest TPBR value. This finding complies with the intuition
that since different methods maximize different fairness metrics, we cannot expect them to perform
best on metrics for which they were not optimized for. Moreover, the impossibility of fairness [7]
that states that various fairness notions cannot be simultaneously enforced also supports the results.

Finally, we observe that in the Compas dataset the trend is less clear and some fairness mechanisms
even if they minimize some fairness metrics, they often behave worse in some other metric. Con-
sequently, we conclude that although it is possible that some mechanism behaves well in terms of
more than one metrics, they are no fairness guarantees on all metrics.

Key takeaway: Fairness usually comes with a penalty in accuracy, as the primary objective of
classification is no longer to just maximize prediction accuracy. Further, fair approaches increase
fairness w.r.t. to the fairness metric they are designed to optimize, but naturally does not perform
best on other metrics. Hence, there is no single best choice of fair approach.

5.3 Efficiency and Scalability Evaluation

In order to evaluate the efficiency and scalability of fair approaches, we did two kinds of experiments
based on the Adult dataset as it contained the most number of data points and attributes. The first
experiment was to analyze the runtime of fair approaches with increasing amount of data points. We
executed a new instance of each approach with a different number of data points (from 1K to 40K)
sampled from the dataset. Our second experiment explores the runtime behavior of approaches as the
number of attributes increases. We executed a new instance of each approach with a different number
of attributes (from 2 to 14). We measure runtime as the time it takes to modify/pre-process the data
for pre-processing approaches, the time to train the fair classifier in in-processing approaches, and
the time it takes to modify/post-process predictions in post-processing approaches. The reason for

3https://github.com/mbilalzafar/fair-classification
4https://github.com/gpleiss/equalized_odds_and_calibration
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Figure 5: Runtime of the fair approaches with increasing number of data points, and increasing
number of attributes.
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Figure 6: A zoom-in look at the runtime of some of the fair approaches from Figure 5.

not including training time pre- or post-processing is that we wanted to purely report the overhead
introduced by these approaches. Our results are shown in Figure 5 and Figure 6.

We notice that different approaches have different approaches scale differently. From figure 5, CAL-
MON and CELIS are the least scalable approaches. CALMON solves a quasi convex optimization
problem that has significant runtime requirements. It especially sees almost an exponential increase
in runtime as the number of attributes grows. This is due to CALMON being a pre-processing ap-
proach that modifies the entire data on per-attribute basis, hence, the complexity of the approach
increases significantly with the number of attributes. On the other hand, CELIS is an in-processing
approach that also solves a polynomial time constrained optimization problem that also increases in
runtime with both the number of data points and the attributes.

Beyond these two approaches, the other approaches are quite efficient, due to their inherent tech-
niques. From a closer look through Figure 6, we notice both of the post-processing approaches are
very scalable, this is due to their natural design. Post-processing approaches tend to apply sim-
ple modifications to the predictions at the end of the machine learning pipeline and typically never
require access to all attributes in training data. ZAFAR is less scalable than the other approaches,
although still quite efficient compared CALMON and CELIS.

Key takeaway: The efficiency of pre- and in-processing approaches depend on their core tech-
nique, there is no definitive pattern. On the other hand, post-processing approaches are naturally
the most scalable and efficient, due to their simplistic mechanisms that only modify the predic-
tions after training.
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6 Conclusions and Future Directions

In this work we studied a variety of fair classification mechanisms that have been introduced in the
recent literature. We compared their performance in terms of correctness, fairness and scalability
across four traditional machine learning models, both linear and non-linear. In terms of correctness
and fairness behavior, we observed an overall trend that fairness mechanisms tend to compromise
fairness for accuracy, although the loss is relatively small in the general case. Further our experimen-
tal results confirm the impossibility of fairness; this notion suggests that different fairness metrics
(e.g., SPD, TPBR etc) cannot be satisfied simultaneously. Thus, there is no mechanism that performs
best across all metrics. Finally, we observe that post-processing are typically the most scalable since
they just depend on the predictions a fairness-unaware model makes and are generally less complex.
Consequently, we believe that choosing a fair mechanism highly depends on the task at hand and
the fairness metric we are interested in optimizing.

This work focused on a small subset of the available mechanisms that focus on group fairness met-
rics; for example, we did not consider at all causal based approaches that model the effect the
sensitive attribute has on the prediction of the model. As a result a more thorough analysis across
mechanisms that also include different fairness definitions could be of independent interest and could
serve as a guideline for machine learning scientists.

Updated Collaboration Plan. Maliha Tashfia Islam: Data processing & preparation, experimen-
tal design for in-processing and post-processing mechanisms (modified and evaluated CELIS, ZA-
FAR, PLEISS and HARDT in terms of correctness and fairness metrics), scalability experiments,
manuscript writing. Zafeiria Moumoulidou: Data processing & preparation, experimental design for
pre-processing mechanisms (hyper-parameter tuning, training, and evaluating the machine models
for FELDMAN, CALMON in terms of correctness and fairness metrics), design and implementation
of unfair machine learning models (hyper-parameter tuning, training, and evaluating in terms of
correctness and fairness metrics), manuscript writing.
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